What are flexi-wings and why do F1 teams want them?

Things are rarely ever new in Formula 1, and the news cycle has once again stopped at a flexi-wing contretemps as the current teams have formed factions over their use.

What are flexi-wings and why do F1 teams want them?
Listen to this article

Video footage of Red Bull’s rear wing tilting back at high speeds on the Barcelona straight at the previous grand prix courted the ire of Mercedes, with Lewis Hamilton quick to draw attention to the “bendy” wing on the RB16B.

And thus, the can of worms was opened; Ferrari and Alfa Romeo also admitted to introducing aeroelasticity into their rear wings, and it seems distinctly possible that there are more teams who indulge in the flexi-wing practice.

The situation now is that the FIA wants to introduce more rigorous testing at the French Grand Prix to ensure that wings do not flex under load – even though the current wings already pass muster in scrutineering.

As ever in F1, this decision suits nobody; Mercedes and McLaren want the revised flex tests before the Azerbaijan Grand Prix at Baku, while the likes of Red Bull, Ferrari, Alfa Romeo and anyone else in possession of a flexible wing argue that this will cost them more money to stiffen up their designs.

On Sky Sports F1, Red Bull team boss Christian Horner – who has been through multiple scuffles over flexing wings during his tenure in charge of the squad – drew attention to Mercedes’ front wing, which also appeared to flex downwards towards the ground, and suggested the Silver Arrows’ qualms were rooted in hypocrisy.

As the throwaway “bendy rear wing” comment from Hamilton was uttered, it pulled upon a thread that has unravelled a significant sub-plot to the 2021 season. Oh, what fun!

Carlos Sainz Jr., Ferrari SF21

Carlos Sainz Jr., Ferrari SF21

Photo by: Andy Hone / Motorsport Images

What is a flexi-wing, and why do F1 teams employ them?

Flexi-wings are...well, wings that flex. Strictly speaking, all wings flex as it’s impossible to achieve infinite stiffness, but some do so more than others.

In Formula 1 terms, this is usually manifested in a tilting action. At speed, the front and rear wings produce more drag as the velocity of the car increases. In mathematical terms, the square of the velocity determines the drag force, as per the following equation:

drag force = (coefficient of drag * frontal area * air density * velocity squared) / 2.

As speed increases, the force pulling the car back increases exponentially.

As such, you can’t use all of the maximum drive of the powertrain to develop speed on the straights. At circuits like Monza, teams use skinny wings to slash drag but, at more conventional circuits, you need the full size of the front and rear wings to generate downforce in the corners.

By tilting them back at speed, this can reduce the overall frontal area of the wing, and perhaps its drag coefficient entirely. By using the above formula, the increasing square of velocity is being marginally offset by the reduced area and drag coefficient.

The truth is that all teams would dearly love to have infinitely flexing wings on their F1 cars, as the front and rear wings could theoretically straighten out and colossally reduce drag on the fastest sections of a circuit. But under grounds of safety, they simply cannot do so.

The FIA does have tests to ensure that wings do not flex during scrutineering, with front wings being subjected to load tests and rear wings subjected to pull-back tests, which are described in the technical regulations under Article 3.9.

Antonio Giovinazzi, Alfa Romeo Racing C41

Antonio Giovinazzi, Alfa Romeo Racing C41

Photo by: Zak Mauger / Motorsport Images

Why are flexi-wings discouraged under safety grounds?

The study of aerodynamics in F1 is often considered as ‘aerospace, but turn it upside-down'. Because many of the same principles exist between the two fields, they share many of the same problems.

Aeroplane wings flex very slightly, because the structure must be a trade-off between rigidity and weight. Materials with a high torsional strength are often heavy, and the same is true of an F1 car.

F1 wings today are produced from carbon fibre, and often use a low-density core (such as a foam) to provide further rigidity – so they’re still light and rigid. But the same is true that the more weight you add, for example using further plies of carbon fibre, the more rigid it becomes. Therefore, the trade-off still exists.

But if a wing is too light, then it will likely lose strength. Under load, this means the wing could break – be it through contact with another car or through effects developed by aeroelasticity.

Aeroelasticity is its own scientific field; although elasticity is desirable for some applications, it leaves a wing or a structure exposed to phenomena such as flutter.

If an F1 wing flutters, this means it produces a very unpredictable level of downforce, which can fluctuate between extreme values.

Lewis Hamilton, Mercedes W12

Lewis Hamilton, Mercedes W12

Photo by: Steve Etherington / Motorsport Images

As such, if a driver is piloting a car with that unpredictability, there will undoubtedly be instances where they have a very low level of downforce in braking for a corner. Naturally, that can result in a particularly nasty crash if they cannot get the car stopped in time.

Flutter is a harmonic motion and, if exposed to frequencies by oncoming airflow that approach its natural frequencies, that can tear the wing apart in extreme cases. By increasing rigidity, that can be avoided.

Those reasons are why the FIA conducts scrutineering to assess the structural integrity of the car to ensure the drivers remain safe within the cockpit.

Read Also:

What will happen next?

As more stringent tests fall into place for the French Grand Prix, this should reduce the wing flex used by teams even further. There will undoubtedly be a cost to this, which will upset the teams operating close to the cost cap, but it can be argued that safety is priceless.

This will not stop teams trying to flex their wings to the maximum level allowed, but it will cut the amount of performance derived from using a flexible wing geometry.

In the future, as materials science continues to evolve, F1 could well allow wings to change shape more flagrantly over the course of a race – but under the current rules, this is not permissible.

shares
comments

Related video

Szafnauer: Aston Martin must be realistic, P3 ‘a step too far’
Previous article

Szafnauer: Aston Martin must be realistic, P3 ‘a step too far’

Next article

How a mistake helped create a Lotus F1 icon

How a mistake helped create a Lotus F1 icon
Why Vasseur relishes 'feeling the pressure' as Ferrari's F1 boss Prime

Why Vasseur relishes 'feeling the pressure' as Ferrari's F1 boss

OPINION: Fred Vasseur has spent only a few weeks as team principal for the Ferrari Formula 1 team, but is already intent on taking the Scuderia back to the very top. And despite it being arguably the most demanding job in motorsport, the Frenchman is relishing the challenge

Formula 1
Jan 27, 2023
The crucial tech changes F1 teams must adapt to in 2023 Prime

The crucial tech changes F1 teams must adapt to in 2023

Changes to the regulations for season two of Formula 1's ground-effects era aim to smooth out last year’s troubles and shut down loopholes. But what areas have been targeted, and what impact will this have?

Formula 1
Jan 26, 2023
Are these the 50 quickest drivers in F1 history? Prime

Are these the 50 quickest drivers in F1 history?

Who are the quickest drivers in Formula 1 history? Luke Smith asked a jury of experienced and international panel of experts and F1 insiders. Some of them have worked closely with F1’s fastest-ever drivers – so who better to vote on our all-time top 50? We’re talking all-out speed here rather than size of trophy cabinet, so the results may surprise you…

Formula 1
Jan 25, 2023
One easy way the FIA could instantly improve F1 Prime

One easy way the FIA could instantly improve F1

OPINION: During what is traditionally a very quiet time of year in the Formula 1 news cycle, FIA president Mohammed Ben Sulayem has been generating headlines. He’s been commenting on massive topics in a championship that loves them, but also addressing necessary smaller changes too. Here we suggest a further refinement that would be a big boon to fans

Formula 1
Jan 24, 2023
How can McLaren keep hold of Norris? Prime

How can McLaren keep hold of Norris?

Lando Norris is no longer the young cheeky-chappy at McLaren; he’s now the established ace. And F1's big guns will come calling if the team can’t give him a competitive car. Here's what the team needs to do to retain its prize asset

Formula 1
Jan 24, 2023
What difference did F1's fastest pitstops of 2022 make? Prime

What difference did F1's fastest pitstops of 2022 make?

While a quick pitstop can make all the difference to the outcome of a Formula 1 race, most team managers say consistency is more important than pure speed. MATT KEW analyses the fastest pitstops from last season to see which ones – if any – made a genuine impact

Formula 1
Jan 23, 2023
When F1 'holiday' races kept drivers busy through the winter Prime

When F1 'holiday' races kept drivers busy through the winter

Modern Formula 1 fans have grown accustomed to a lull in racing during winter in the northern hemisphere. But, as MAURICE HAMILTON explains, there was a time when teams headed south of the equator rather than bunkering down in the factory. And why not? There was fun to be had, money to be made and reputations to forge…

Formula 1
Jan 20, 2023
What Porsche social media frenzy says about F1’s manufacturer allure Prime

What Porsche social media frenzy says about F1’s manufacturer allure

Porsche whipped up a frenzy thanks to a cryptic social media post last week, and though it turned out to be a false alarm, it also highlighted more just why manufacturers remain such an important element in terms of the attraction that they bring to F1. It is little wonder that several other manufacturers are bidding for a slice of the action.

Formula 1
Jan 19, 2023