Motorsport Blog
Topic

Motorsport Blog

Insight: F1 Wind tunnel technology reaches amazing new levels

Here at JA on F1 we like to take readers' questions direct to people who know the answer.

Insight: F1 Wind tunnel technology reaches amazing new levels

Here at JA on F1 we like to take readers' questions direct to people who know the answer. That's how the original FOTA Fans Forum started in 2010.

We had this question about the level of sophistication of F1 wind tunnels and we put it to Professor Mark Gillan, formerly chief operations engineer at Toyota and Williams in F1 and a leading expert on wind tunnel development.

His answer shows how amazing the level of technology has become - with teams even able to introduce exhaust flows into the testing model - but also raises questions about how there is this whole side to the sport which is hidden away and secret.

Question: What do you know about or have heard about centrifugal forces research in F1? What if any differences are there between a stationary wind tunnel model. A rolling road wind tunnel model and a engine running, wheels turning wind tunnel model/actual car.

Hell, it keeps bikes running upright as if they have a ghost rider. There’s a strong force there. It has at least been looked at? Is there any exploitation of it in F1?

Prof Mark Gillan's answer: Recent developments over the last decade in motorsport wind tunnel testing have been transformative.

However it should be noted that some of what goes on within an F1 tunnel facility is somewhat artificially directed by the restrictions in facility usage (via the F1 regulations), especially with regards to model size (now at 60% max scale in F1 through regulation), speed, wind on time, number of runs and tunnel occupancy.

During the last decade there has been a dramatic push in the following areas:

i) Aggressive application of enhanced efficient wind tunnel testing methodologies, including continuous motion systems, high speed data acquisition analysis, with ultra-quick model changes;

ii) Shape, aeroelasticity and turbulence intensity matching of model scale to full scale;

iii) True cornering studies with proper interference correction methodologies;

iv) Steel belt rolling road systems with eccentric wheel drive units for tracking tyre contact patch movement and measuring wheel lift through the belt;

v) Real time robotic flow visualisation and automatic minimal interference full flow field interrogation;

and

vi) Remote health monitoring of facility and Key Performance Indicators (or KPIs) tracking tools.

So to specifically answer your reader's question; over the last decade the wind tunnel model testing process has transitioned from fixed steady state single ride height, yaw and steer systems to fully dynamic continuous motion models, integrated with high speed balances, pressure sensors and acquisition systems that map the entire operating envelope of the car within a few minutes of wind on time.

Typically this sweep is done with a roof-mounted hexapod system (see below)

The rolling road systems and integrated boundary layer bleed systems not only give a more realistic flow field around the car - particularly in the diffuser region - but also allows you to measure wheel-lift through the belt using the eccentric wheel pads that sit underneath the tyre contact patches.

The teams can also run pseudo exhaust flows using integrated pneumatic systems or on board high speed electric motors.

There are even attempts to represent cornering manoeuvres, but this activity and process is secret.

As the teams drive their continuous motion systems faster and faster they do come up against limits and inertial effects play into this.

The teams then feed these complex multi-dimensional aero maps (measured in the tunnel) into their driver in the loop simulators.

The simulators help the teams better understand the importance of transient effects and stability criteria though performing "what if" studies.

These studies help drive the weighting criteria and KPIs in the tunnel and pinpoint what the test programme should include.

With each week F1 wind tunnel testing becomes more advanced, more dynamic and more realistic, with continuous improved correlation between CFD, the tunnel and the track.

How the hexapod works

The picture (courtesy MTS Systems Corporation) shows a modern F1 rolling road set up with hexapod, fairing strut which connects the hexapod to the 60% model and the rolling road itself.

The top of the fairing strut is aligned with the ceiling in the wind tunnel so the hexapod is completely hidden in the ceiling. The hexapod provides 6 degrees of motion for the model and forces and moments are taken from an internal balance that sits inside the model and is about the size of a large shoe box. To be exact whilst the hexapod can provide yaw motion, yaw is actually provided by a separate drive unit under the driver's helmet in order to keep the faired strut aligned with the air flow in the tunnel and to have minimal blockage.

The model sits on a 1mm thick steel belt that is driven by the rolling road via a set of rollers. These rollers also steer the belt to ensure that it is not ripped off by the side forces that are generated by the wind tunnel model. The speed of the belt is the same as the airflow and the boundary layer ahead of the belt is removed using suction plates and then re-injected aft of the road. The belts range in sizes but modern rolling roads are over 3m wide and about 9m long.

All photos: LAT Images.

What do you think of the level of wind tunnel testing in F1? Should the sport look to tell its capability story or should this kind of work remain secret from fans?

Leave your comments in the section below
shares
comments
Verstappen: Red Bull would dominate F1 with Mercedes power

Previous article

Verstappen: Red Bull would dominate F1 with Mercedes power

Next article

Renault aims to "fully match" Red Bull by 2019

Renault aims to "fully match" Red Bull by 2019
Load comments
Why the end is nigh for F1’s most dependable design tool Prime

Why the end is nigh for F1’s most dependable design tool

Wind tunnel work forms the bedrock of aerodynamic development in Formula 1. But as Pat Symonds explains, advances in virtual research are signalling the end of these expensive and complicated relics.

Formula 1
Jun 13, 2021
Why Mosley’s legacy amounts to far more than tabloid rumour Prime

Why Mosley’s legacy amounts to far more than tabloid rumour

The newspapers, naturally, lingered over Max Mosley’s tainted family history and niche sexual practices. But this is to trivialise the legacy of a big beast of motor racing politics. Stuart Codling weighs the life of a man whose work for safety on both road and track has saved hundreds of thousands of lives, but whose penchant for cruelty remains problematic and polarising.

Formula 1
Jun 12, 2021
Why pragmatic Perez isn't fazed by no-nonsense Red Bull F1 culture Prime

Why pragmatic Perez isn't fazed by no-nonsense Red Bull F1 culture

Sergio Perez has spent most of his career labouring in Formula 1’s midfield, wondering whether he’d ever get another shot at the big time. Red Bull has handed him that chance and, although life at the top is tough, the Baku winner is doing all the right things to get on terms with Max Verstappen, says BEN ANDERSON

Formula 1
Jun 11, 2021
What the data tells us about the F1 2021 title fight Prime

What the data tells us about the F1 2021 title fight

Formula 1 has been tracking car performance using timing loops mounted every 200m around each circuit – to the extent that it was able to anticipate Ferrari’s 'surprise’ pole in Monaco. PAT SYMONDS explains what this means for this season and beyond

Formula 1
Jun 10, 2021
The weighty issue F1 needs to find a balance with Prime

The weighty issue F1 needs to find a balance with

OPINION: After consecutive street races with contrasting highlights, one theme stood out which has become a prevalent issue with modern Formula 1 cars. But is there a way to solve it or, at least, reach a happy middle ground to help all parties?

Formula 1
Jun 10, 2021
The changes behind a 'feel-good' F1 result in Baku Prime

The changes behind a 'feel-good' F1 result in Baku

OPINION: The Azerbaijan Grand Prix had elements that make Formula 1 really exciting – unpredictability and shock results. This resulted in heartbreak for several of the championship’s regular contenders and joy for others who rarely reach the ultimate limelight. And one of those on the Baku podium is riding a wave of form he’s keen to continue

Formula 1
Jun 9, 2021
The human cost to replacing Formula 1's cancelled rounds Prime

The human cost to replacing Formula 1's cancelled rounds

OPINION: With the global pandemic still lingering, Singapore's grand prix has been cancelled for 2021, with more looking likely to follow. Although Formula 1 has TV deals and profits to chase, retaining a 23-race calendar could be most harmful to those who sacrifice the most for the championship.

Formula 1
Jun 8, 2021
Azerbaijan Grand Prix Driver Ratings Prime

Azerbaijan Grand Prix Driver Ratings

An eventful weekend in Baku full of incident and drama lent the race result an unusual feel, as three drivers scored their first podiums of the year. But it wasn't the eventual race winner who scored top marks in our driver ratings

Formula 1
Jun 7, 2021